除了这些因素外,像是足球这类的比赛中还会有一个问题——比赛场地非常宽阔,如果想要把全场都拍摄下来的话,就需要把摄像头放得足够远才可以。而这就会导致视频中球体的成像质量低得多,使得测算系统更难对球体的运动轨迹进行跟踪。
在瑞士的洛桑联邦理工学院,Andrii Maksai和他的好朋友共同设计出了一种全新的球体运动轨迹跟踪系统,据称能够应用于除板球、网球外的其他球类运动。
大多数球体运动轨迹跟踪系统依赖于两种不同的方法来进行测算。第一种就是通过跟踪球体在三维空间中的运动,然后预测出球体在受力之后的各种可能的轨迹。随着球体的追踪数据越来越多,球体能够被逐渐精确到惟一的一条运动轨迹上。
这种方法的优点是,轨迹的测算中内置了物理定律,可以有效避免出现不科学的测算结果。然而,这种方式对球体路径追踪的成像质量要求是非常高的,必须要相当精确才可以正确测算,更不用说被遮挡了。
另一种方法就是跟踪球员,当球员控球时进行受力分析。当球从一个人传到另一个人后再对另一个球员进行跟踪测算。这样做的优点是,该系统不会因遮挡而无法对传球路径进行测算。事实上,这种方法应用在篮球比赛时效果的确非常好。然而,如果没有对球体的运动轨迹加以受力分析的约束的话,这个系统有时就会生成出不科学的测算结果。
Maksai和伙伴们一起想出了一个非常浅显易懂的解决方案——同时对球体和球员进行追踪。从两方面得到数据后进行合并测算。
“我们精确地模拟球体和球员的运动轨迹,并在球体没有被遮挡的情况下对球体加以受力分析的约束,最终得出测算结果。”
——Maksai
该小组已在多场排球、篮球和足球比赛的视频中测试了它的算法——通过多台不同角度同时进行拍摄的摄像头得到影像数据,合成出3D模型。但是,在多次遮挡球体的情况下, 即使通过这种合成算法进行测算,实际结果仍然还是不够完美。结果表明目前的技术还是有改善空间的。
虽然这个系统并不完美,但这不妨碍其被称为球体运动轨迹测算领域的一块里程碑——因为这个系统已经极大地提高了演算处理时间,已经足以能够在电视转播中为其他球类比赛提供即时的虚拟3D回放了。
但是,处理时间的压缩势必会导致演算的正确率降低,而这同样严重限制了该系统的实用性。毕竟,你也不能把不科学的演算路径播放给电视前的观众啊。
而像篮球这种比赛中,由于球体运动轨迹的不可预测性较小,所以这种测算系统的优化也还是有所帮助的。
有像Maksai 团队这样为之努力着的人,相信我们距离能够在足球、篮球和排球比赛中看到即时3D回放已经不远了。不过我们还是要清醒的意识到,目前还没有能够在商业上可行的解决方案。
这可能还需要研究人员进一步优化处理即时演算的方式。目前来看,有一种可能性是采用深度人工智能学习技术,通过人工智能来预测球体的运动轨迹。而这可能会是一个完美地解决方案。
无论研究人员最终会选择哪种方式,目前在这一领域仍然还有很多问题需要解决。
Via technologyreview
相关阅读:
成为VR的利器之前,运动捕捉技术是如何发展过来的?
对于人工智能,你或许理解错了
文章声明:以上内容(如有图片或视频在内)除非注明,否则均为雨燕体育直播_雨燕无插件体育直播_雨燕直播体育_雨燕体育直播nba原创文章,转载或复制请以超链接形式并注明出处。
本文作者:admin本文链接:https://123wssy.com/post/7690.html
还没有评论,来说两句吧...